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Problem Statement

Name Math Score Physics Score

Alice 90 84

Bob 75 80

Bill 92 95

Given a table

Knowledge Graph

Entropy of values is large → Box Plot

Generate Visualization Rules

Values are monotonic → Line Chart

Related Works

Overall Workflow and Details

Recommend how to visualize the data
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Rule-based approaches

• An explicit and manual list of rules and heuristics by expert judgment.
• Difficult and tedious to compile a complete rule list.
• Rules may not be generalizable to different datasets or visualization choices.

Machine-learning-based approaches

• Train a deep learning model to learn from dataset-visualization examples.
• Do not need to manually specify the rules.
• Work as a black box, difficult to tell why such visualization is recommended.
• Users may not trust in the recommended visualizations.

Step 1
Feature Extraction

Step 2
Knowledge Graph Construction

Step 4
Embedding-based Inference

Step 3
Embedding Learning
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Train the embeddings to achieve:

𝒉 + 𝒓 ≈ Ԧ𝒕

Score for a relation 𝒉, 𝒓, 𝒕

𝑔 ℎ, 𝑟, 𝑡 = − 𝒉 + 𝒓 − Ԧ𝒕
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Original TransE Loss Function for 
Training Embeddings

𝐿 = 

ℎ,𝑟,𝑡 ∈𝑆



ℎ′,𝑟, 𝑡′ ∈𝑆′

𝑅𝑒𝐿𝑈 𝛾 + 𝑔 ℎ′, 𝑟, 𝑡′ − 𝑔 ℎ, 𝑟, 𝑡

𝛾 : Margin parameter, 𝛾 > 0

𝑆 : Triplets ℎ, 𝑟, 𝑡 in the graph

𝑆′: Generated negative triplets ℎ′, 𝑟, 𝑡′

𝜎 : Sigmoid function

𝑤: The triplet's probability of being true

TransE

Each edge is represented as

(head entity, relation, tail entity)

i.e., a triplet for short

Data type: 
Quantitative

Column x

Feature of

Each edge with two entities and a relation

has a corresponding embedding vector:

(𝒉, 𝒓, Ԧ𝒕)
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When 𝒉 + 𝒓 is closer to Ԧ𝒕 , score is higher 

Data Feature → Visual Design Choice

For a feature 𝑓𝑖 ,

𝒇𝒊 + 𝒓𝒊 = 𝒅𝒊𝒎

where 𝑟𝑖 is a relation connecting to 𝑓𝑖

𝒅𝒊𝒎 represents an imaginary data column

Relation 𝑟𝑡𝑎𝑟𝑔𝑒𝑡 maps data to a vector 𝑣𝑐

𝒅𝒊𝒎 + 𝒓𝒕𝒂𝒓𝒈𝒆𝒕 = 𝒗𝒄

Given 𝑓𝑖 , for each visual choice 𝑣𝑛 ,

define a score indicating how much 𝑣𝑛 is preferred

𝑔𝑓𝑖→𝑣𝑛 = − 𝒇𝒊 + 𝒓𝒊 + 𝒓𝒕𝒂𝒓𝒈𝒆𝒕 − 𝒗𝒏

New Data → Visual Design Choice

Given a new data 𝑑𝑛𝑒𝑤 , 

extract all its features 𝐹𝑛𝑒𝑤

For each visual choice 𝑣𝑛 ,

define a score indicating which 𝑣𝑛 is recommended 

𝑔 𝑑𝑛𝑒𝑤 , 𝑣𝑛 =
1

|𝐹𝑛𝑒𝑤|


𝑓𝑖∈𝐹𝑛𝑒𝑤

𝑔𝑓𝑖→𝑣𝑛

=
−1

|𝐹𝑛𝑒𝑤|


𝑓𝑖∈𝐹𝑛𝑒𝑤

𝒇𝒊 + 𝒓𝒊 + 𝒓𝒕𝒂𝒓𝒈𝒆𝒕 − 𝒗𝒏

Visualization choice 𝑣𝑛 with a higher score is better

Evaluation Setup

Visualization Corpus

• VisML corpus
• 88,548 dataset-visualization pairs

About Knowledge Graph

216,851
Entities

9,679,463
Triplets

1,000
Embedding
Dimension 

Quantitative Evaluation

Two Inference Tasks

• Inference of visualization types
• Inference of visualization axis

Try different embedding learning models

Qualitative Evaluation

Participants and Procedure of Expert Interviews

• 12 researchers who have conducted research in data visualization for at least 1 year.
• Experts were asked to finish the three tasks through online meetings

Rules and recommendation results – Case study Tasks of Expert Interviews

Task 1
Provided top-5 rules of each visualization type.
Give each generated rule a score ranging from 1 (the
least reasonable) to 5 (the most reasonable).

Feedbacks
Overall, the generated rules are appreciated by experts.

Task 2
Provided 30 datasets and corresponding top-2 recom-
mended visualizations by our approach.
Give each recommended visualization a score ranging
from 1 (the least reasonable) to 5 (the most reasonable).

Feedbacks
Average score is 3.7944, thought to be of high quality.

Task 3
Provided 30 datasets, ask the experts to select top-2
visualization types, for collecting their preferred design
choices.
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TransE-adv (with Self-adversarial Negative 
Sampling) Loss Function for Training 

Embeddings

𝐿 = −𝑙𝑜𝑔𝜎 𝛾 + 𝑔 ℎ, 𝑟, 𝑡

− 

ℎ′, 𝑟, 𝑡′ ∈𝑆′

𝑤(ℎ′, 𝑟, 𝑡′)𝑙𝑜𝑔𝜎 −𝑔 ℎ′, 𝑟, 𝑡′ − 𝛾


