KG4Vis: A Knowledge Graph-Based Approach for Visualization Recommendation

Overall Workflow and Details

Step 1 Feature Extraction				
	Continu	ious Features		
	Feature Name	Explanation		
Values	num_unique_elements	This feature counts the number of unique values.		
	sortedness	This feature measures the how sorted the		

hese features measure the

proportion of outliers according

to 1.5IOR/3IOR/3Std/(1%, 99%)

%_outliers_15ig

%_outliers_3igr

%_outliers_3std

Step 2 Knowledge Graph Construction

x 0 0.01 ... 0.96 0.98 1 y -0.28 0.41 ... -0.32 -0.02 1.12

Line	The column is not the <mark>only one</mark> in dataset
catter	Values in a column are numerical

	%_outliers_1_99	rule.	
ĺ	unique_percent	This feature measures the proportion of	
		unique values in a data column.	
Ì	entropy	These features measure how	
	gini	disordered the values are.	
Ì	normality_p	These features reflect how much	
	normality_statistic	the values are distributed normally.	
ſ	normalized_range	These features reflect the range	
l	range	of values in a data column.	
ſ	q25		
	q75		
	normalized_median		
	normalized_mean	These features are some basic	
	min	statistical measurements of	
	max	a data column.	
	mean		
	longth		
ł	rengui	This facture measures the properties of	
	mode_percent	mode values in a data column	
ŀ	# minning alargents	Those factors affect the	
	#_missing_elements	number/ proportion of	
	missing_percent	missing values in a data column	
ł	mean value langth	They many the length of mean!	
	median value length	median values in a data column	
ŀ	min longth of min-	They many the minimum (
	std length of value	standard deviation/maximum	
	max_length_of_value	length of values in a data column	
	# of words in name	This facture management how many words	
ames	#_or_words_m_name	in the column name	
-	nama lanath	This feature measures the length of the	
	name_tengui	column name	
ł	# uppercase char	This feature measures how many upper	
	#_uppercase_enai	case in the column name	
ŀ	field name length	This feature measures how many charac-	
	neid_name_length	ters in the column name	
	0		
	Catego	orical Features	
	Feature Name	Explanation	
ypes	specific_string		
	specific_integer	The specific data type of this data column	
	specific_decimal	is string/integer/decimal/datetime.	
	specific_datetime		
	general_temporal	The general data type of this data column	
	general_quantitative	is temporal/quantitative/categorial.	
Zal	general_categorial	The data as home section and the	
values	nas_none	The data column contains missing value.	
	Is_monotonic	Values are monotonic.	
	1s_lin_space	values are in linear space.	
	is_log_space	values are in log space.	
	1s_unique	All values are unique.	
	is_sorted	All values are sorted.	
	has_outliers_15iqr		
	has_outliers_3iqr	Outlier exists according to 1.5IQR/3IQR/	
	has outliers 1 00	55tu(170, 99%) fule.	
	is pormal 1	Values are normally distributed	
	is_normal_5	with $n < 0.01/n < 0.05$	
	is only field	The data column is the only one within the	
	io soni y snord	dataset.	
Names	1st_uppercase	The column name starts with an upper case.	
	x_in_name		

Outlier exists in a column (3Std) Histogram Data Feature → Visual Design Choice For a feature f_i , $\overrightarrow{f_i} + \overrightarrow{r_i} = \overrightarrow{d_{im}}$ where r_i is a relation connecting to f_i $\overrightarrow{d_{im}}$ represents an imaginary data column Relation r_{target} maps data to a vector $\overrightarrow{v_c}$ $\overrightarrow{d_{im}} + \overrightarrow{r_{target}} = \overrightarrow{v_c}$ Given f_i , for each visual choice v_n , define a score indicating how much v_n is preferred $g_{f_i \to v_n} = - \left\| \overrightarrow{f_i} + \overrightarrow{r_i} + \overrightarrow{r_{target}} - \overrightarrow{v_n} \right\|$ (f_2^D) *r*targe $g_{f_2^C \to v_n}$ ' r_{target} rtarget f_1^D New Data → Visual Design Choice Given a new data d_{new} , extract all its features F_{new} For each visual choice v_n , define a score indicating which v_n is recommended $g(d_{new}, v_n) = \frac{1}{|F_{new}|} \sum_{f_i \in F_n} g_{f_i \to v_n}$

time_in_name digit_in_name whitespace_in_name dollar_in_name pounds_in_name euro_in_name yen_in_name	A word or symbol "x", "y", "id", "time", digit, whitespace, "\$", "€", "£", "Y" is in the column name.
--	--

Outlier: 1.5IQR		Position: Y-axis	
Kr	nowledge Graph		

- S: Triplets (h, r, t) in the graph
- S': Generated negative triplets (h', r, t')
- σ : Sigmoid function
- *w*: The triplet's probability of being true

Qualitative Evaluation

Visualization choice v_n with a higher score is better

Evaluation Setup

Visualization Corpus

id_in_name

- VisML corpus
- 88,548 dataset-visualization pairs

About Knowledge Graph

Quantitative Evaluation

Two Inference Tasks

- Inference of visualization types
- Inference of visualization axis

Try different embedding learning models

	Axis	Visualization Type	
	Accuracy	MR	Hits@2
TransE-adv	0.7350	1.9567	0.7489
TransE	0.7214	1.9718	0.7445
RotatE	0.7193	1.9608	0.7458

Participants and Procedure of Expert Interviews

- 12 researchers who have conducted research in data visualization for at least 1 year.
- Experts were asked to finish the three tasks through online meetings

Tasks of Expert Interviews

Task 1

Provided top-5 rules of each visualization type. Give each generated rule a score ranging from 1 (the least reasonable) to 5 (the most reasonable).

Feedbacks

Overall, the generated rules are appreciated by experts.

Task 2

Provided 30 datasets and corresponding top-2 recommended visualizations by our approach.Give each recommended visualization a score ranging from 1 (the least reasonable) to 5 (the most reasonable).

Feedbacks

Average score is 3.7944, thought to be of high quality.

Task 3

Provided 30 datasets, ask the experts to select top-2 visualization types, for collecting their preferred design choices.

Acknowledgment:

This poster is originally made by Mr. Yuzheng Cai for course "Data Visualization: Application and Implementation" instructed by Dr. Siming Chen, Fudan University, October 2021.

1